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1. Introduction

One of important issues for particle physics is the small mixing angles in the charged fermion

sector and the hierarchy of quark and lepton masses [1].This issue has brought into the focus

due to the success of the Standard Model (SM) in describing the available experimental

data except such mass spectrum and due to the recent experiments are showing it is likely

neutrinos have such mass hierarchy but their mix pattern differs from that of the quarks,

e.g., the 2-3 lepton mixing angle is close to the maximal value while the analogous quark

mixing angle is small (θq
23 ∼ 2◦). The fermions mass spectrum is an aspect of a problem

named as fermion flavour structure [2] which includes the suppression of flavour change

neutral current, strong CP-problem, etc.

Approaches based on Supersymmetry (SUSY) have been proposed in order to explain

the values of these masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

They are guided by the pattern of hierarchy and one pattern used is the following horizontal

hierarchy :

mt : mc : mu ∼ 1 : εu : ε2
u εu ' 1

500
,

mb : ms : md ∼ 1 : εd : ε2
d εd ' 1

50
,

mτ : mµ : me ∼ 1 : εe : ε2
e εe ' 1

50
,

(1.1)
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where mu and md are current quark masses. This pattern has suggested, e.g., the masses of

different families are generated in different stages of chiral symmetry breaking: at the first

stage only t and b quarks acquire mass and there is no mixing, at the second stage c and s

get mass and there is a mixing between the third and second family and in the end u and d

quarks get their masses. This can be realized by the radiative mass generation mechanism

where the lowest quarks are prevented to acquire mass at tree level [3 – 5]. However this

mechanism in supersymmetric models gives rise to the flavour changing problem in the loop

that generates the masses. In order to avoid this problem a horizontal flavour symmetry has

been proposed within supersymmetric extensions of SM [6] and unified SO (10) model [7].

The last one assumes a pattern where the first family instead of third family plays a unique

role and named it as inverse hierarchy pattern. This is inspired by the fact at GUT scale

running masses of electron, u and d quarks are not strongly split.

Another pattern shows us two different scales for the masses of quarks, one is at MeV

scale

mu ∼ 1 − 5 MeV, md ∼ 3 − 9MeV, ms ∼ 75 − 170MeV, (1.2)

while the other is at GeV scale:

mc ∼ 1, 15 − 1, 35 GeV, mt ∼ 174 GeV, mb ∼ 4, 0 − 4, 4 GeV. (1.3)

This point of view has implications for nuclear physics. Due to u, d and s quarks

are lights one is allowed to build an effective field theory as an expansion on masses of

light quarks of the underlying theory. The Chiral Perturbation Theory (ChPT) [8] is the

prototype of this approach. It respects all principles of the underlying theory but with

effective degrees of freedom instead of quarks degrees of freedom. A model independent

description of dynamics [9] and structure of nucleons [10] above MeV scale is obtained.

We explore the implications of this picture in MSSM and Left-Right Supersymmetric

Model (LRSM). In the framework of SUSY models the Higgs mechanism can be extended

by increasing the number of scalar particles, as a consequence the number of vacuum

expectation values also is increased and one has the possibility of two scale of masses for

the case of two scalar particles. However there is no constrains to the size of masses and it

is likely they could be at the same scale.

We also study the mechanism of radiative mass generation in the last pattern. In this

case an additional symmetry [3, 4] suppresses the mass generation of ligth quarks (u, d and

s ) at tree level while the the heavier ones acquire masses and there is mixing of t, b, and

c quarks masses. For the leptons the same description is applied and a low value for the

masses of light quarks and light lepton is obtained.

The outline of this work is as follows. The section 2 describes how the additional

discrete symmetry Z ′
2 is introduced into the framework of MSSM in order to prevent the

light quarks and the electron to acquire mass at tree level. The radiative mechanism is

described in section 3, and u, d and s quarks together with the electron acquire mass

at 1-loop level. We also show that our results are still valid in two supersymmetric left-

right models. Our conclusions are found in the last section. All the details of the models

(conventions) and computations of mass matrices are in the appendices.
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2. MSSM and Z ′
2 symmetry

In the MSSM [11], which the gauge group is SU(3)C ⊗ SU(2)L ⊗ U(1)Y , let L̂ (l̂c) de-

notes left-handed (right-handed) leptons,1 Q̂(ûc, d̂c) left-handed (right-handed) quarks and

Ĥ1, Ĥ2 are the Higgs doublets respectively (a summary is in appendix A).

The fermion mass comes from the following terms of the superpotential (eq. (A.8)):

W = −
(
yl

abLaH1l
c
b + yd

ijQiH1d
c
j + yu

ijQiH2u
c
j + h.c.

)
+ · · · , (2.1)

where yl
ab, yd

ij and yu
ij are the yukawa couplings of Higgs with leptons families, “down”

sector quarks and “up” sector quarks respectively and . . .stands for other terms which we

are not concerned here. The family indices a and i run over e, µ, τ and 1, 2, 3, respectively.

Based on eq. (A.10), we get the following non-diagonal mass matrices M l,d,u
ij :

Mu
ij =

yu
ij√
2
v2(uiu

c
j + h.c.),

Md
ij =

yd
ij√
2
v1(did

c
j + h.c.),

M l
ab =

yl
ab√
2
v1(lal

c
b + h.c.). (2.2)

Where all the fermions fields are still Weyl spinors. The fields in the parenthesis define the

basis to get the mass matrix. We can also rewrite all the equations above as

Mψ
ij = −

(
ψ̄iLmijψjR + h.c.

)
, (2.3)

where ψi
2 is the Dirac spinor.

Therefore, the “down” quark sector (d, s and b quarks) as well as the e, µ and τ will

have masses proportional to the vacuum expectation value v1, whereas the “up” sector will

have masses proportional to v2. Note that the neutrinos remains massless due to lepton-

number conservation, but we know that neutrinos have masses. In order to give mass to

neutrinos one has to introduce R -parity violating term WRV of eq. (A.8). We will focus

our attention to the quark and lepton sector and for the case of neutrinos the reader is

invited to look at ref. [12].

Although the Higgs mechanism and SUSY allow two different scale of masses, there is

no underlying principle to keep them different from each other. The fact that mu,md,ms

and me are many orders of magnitude smaller than the masses of others fermions may well

be indicative of a radiative mechanism at work for these masses as considered at [3, 4].

The key feature of this kind of mechanism is to allow only the quarks c, b, t, and the

leptons µ and τ have Yukawa couplings to the Higgs bosons. It means to prevent u, d, s

and e from picking up tree-level masses, all one needs to do at this stage is to impose the

1c stands for charge conjugation
2ψi indicate any charged fermion, the translation of two-component formalism into four-component

formalism can be found in [11, 13, 18]
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following Z ′
2 symmetry on the Lagrangian

d̂c
2 −→ −d̂c

2, d̂c
3 −→ −d̂c

3, ûc
3 −→ −ûc

3, l̂c3 −→ −l̂c3, (2.4)

the others superfields are even under this symmetry. On ref. [4], only the electron and the

first quark family don’t pick up tree-level masses.

After the diagonalization procedure of mass matrices of fermions (see appendix B), we

can write Mdiag = diag(mf1 ,mf2,mf3) where

mf1 =
1

2
(tf + rf ) , mf2 =

1

2
(tf − rf ) , mf3 = 0, (2.5)

with tf , rf are given at eq. (B.4) and f runs over fermions. Taking Mdiag into account we

can do the following phenomenological identification:

mu1 ≡ mt, md1 ≡ mb, mu2 ≡ mc, ml1 ≡ mτ , ml2 ≡ mµ . (2.6)

In order to fit the experimental data we make the following choices into eq. (2.5):

tl = mτ + mµ, tu = mt + mc, td = mb,

(yl
13)

2ul − 2yl
12y

l
13vl + y2

l + (yl
12)

2zl =
1

4

[
(mτ + mµ)2 − (mτ − mµ)2

]
,

(yu
13)

2uu − 2yu
12y

u
13vu + y2

u + (yu
12)

2zu =
1

4

[
(mt + mc)

2 − (mt − mc)
2
]
.

Thus the quarks u, d, s and the electron come about be massless due to Z ′
2 symmetry. It

means a discrete symmetry like Z ′
2 is protecting the Chiral symmetry to be broken in the

SU (3)F sector.

Now, we want to show that a consistent picture with the experimental values of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix is obtained even in the presence of the Z ′
2

symmetry. The CKM matrix comes from the fact that the mass eigenstates of physical

quarks are a mixture of different quarks eigenstates of symmetry and for three generation

of quarks one has:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 (2.7)

where the matrix element Vij indicates the contribution of quark (j ) to quark (i). The

experimental values are [19]:



0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045

0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044

0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992



 . (2.8)

As the quarks t and c get masses at tree-level their states can be mixed and we can

write the eigenvector of “up” quark sector 3 as

Eu
L =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1



 . (2.9)

3(t, c, u)T = (u1, u2, u3)
T EuT

L
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For another hand, in the “down” quark sector only the quark b get mass at tree-level and

there is no mixing on this sector. Therefore we can write

Ed
L = I3×3 . (2.10)

where I3×3 is the identity matrix 3×3. Then, with eq. (2.9,2.10), we can get an expression

to the CKM matrix as follows:

VCKM = Eu†
L Ed

L =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



 . (2.11)

Comparing eqs. (2.8), (2.11), we can conclude that the Z ′
2 symmetry in the MSSM can

explain the lower masses of the u, d and s quarks and also gives a hint about the mixing

angles of quarks.

3. Radiative mechanism to the fermions masses

The discrete symmetry Z ′
2 has to be broken in order to allow the generation of fermions

masses by radiative corrections and the most general soft supersymmetry breaking La-

grangian eq. (A.9) has already the following Z ′
2 breaking terms

Lsoft =

[
3∑

i=1

Ad
i3H1Q̃id̃

c
3L +

3∑

i=1

Ad
i2H1Q̃id̃

c
2L +

3∑

i=1

Au
i3H2Q̃iũ

c
3L

+
3∑

a=1

Al
a3H1L̃a l̃

c
3L + h.c.

]
+ · · · , (3.1)

where · · · stands for other terms. It means that the squarks q̃ and q̃c will mix, the same

will happen with the sleptons l̃ and l̃c 4. We can write

Lsoft = M2
Q

(
ũ∗

3ũ3 + d̃∗3d̃3 + d̃∗2d̃2

)
+ M2

u ũc∗
3 ũc

3 + M2
d

(
d̃c∗
3 d̃c

3 + d̃c∗
2 d̃c

2

)
+ M2

Ll̃∗3 l̃3

+ M2
l l̃c∗3 l̃c3 +

[
Al

33v1 l̃3l̃
c
3 + Au

33v2ũ3ũ
c
3 + Ad

33v1d̃3d̃
c
3 + Ad

22v1d̃2d̃
c
2 + h.c.

]

+ · · · (3.2)

For the case of the physical u-squark states, that we will denotated as ũ1, ũ2, it gives rise

to the following eigenstates of mass as functions of symmetry eigenstates:5

ũ1 = cos θũũ3 + sin θũũc∗
3 ,

ũ2 = − sin θũũ3 + cos θũũc∗
3 . (3.3)

4In supersymmetric theories the sfermions masses come from the scalar potetial given by V = VF +VD +

Vsoft [13, 18], here we are not showing all the details
5Mixing between squarks of different generations can cause severe problems due to too large loop contri-

butions to flavour changing neutral currents (FCNC) process. Due this fact we are ignoring intergenerational

mixing.
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Figure 1: The diagram which gives mass to quark u which does not apperar in the superpotential,

g̃ is the gluino while ũ is the squark.

Similar expressions to the d-squark (d̃), s-squark (s̃), selectron (ẽ) and smuon (µ̃) can be

obtained. By another side, the interaction between quark-squark-gluino is given by:

Lqq̃g̃ = −i
√

2gsT̄
a(ũc

i ū
c
i λ̄

a
C − ¯̃u

c
iu

c
iλ

a
C + d̃c

i d̄
c
i λ̄

a
C − ¯̃

d
c

id
c
iλ

a
C) + · · · . (3.4)

We must remember that, mixing between sfermions of different generations is model depen-

dent. Such mixing can cause severe phenomenological problems, by producing unaccept-

ably large flavor changing neutral currents (FCNC) between ordinary quarks and leptons

through 1–loop processes. There are three ways to suppress this FCNC [13]. The most

popular way is assuming that the quark-squark mixing is flavor conserving. But on this

case, Vtd, Vts, Vcb and Vub (which are zero at tree level), remains zero after the radiative

one loop correction for the quark mass matrices. In order to get a small values for these

mixing angle we can use the mass insertion method [14]. Another possibility one can add

higher-dimension (nonrenormalizable) operators at the superpotential, that arise from new

physics at some scale Λ [15 – 17]. This subject will be useful for further study.

The interaction, given at eq. (3.4), generate the radiative mechanism for the mass of

the u, d and s quarks. On Fig.(1) we show the lowest order contribution. It was also shown

in [3, 4] to current mass of up quark.

Notice that, all the mass insertion on this diagram came from the soft term, see

eq. (3.2), while the two vertices come from eq. (3.4). Similar diagram can be drawn to the

d and s quarks.

Following [4] we calculated their masses and we obtained:

mu ∝ αs sin(2θũ)

π
mg̃

[
M2

ũ1

M2
ũ1

− m2
g̃

ln

(
M2

ũ1

m2
g̃

)
−

M2
ũ2

M2
ũ2

− m2
g̃

ln

(
M2

ũ2

m2
g̃

)]
,

md ∝ αs sin(2θ
d̃
)

π
mg̃

[
M2

d̃1

M2
d̃1

− m2
g̃

ln

(
M2

d̃1

m2
g̃

)
−

M2
d̃2

M2
d̃2

− m2
g̃

ln

(
M2

d̃2

m2
g̃

)]
,

ms ∝ αs sin(2θs̃)

π
mg̃

[
M2

s̃1

M2
s̃1

− m2
g̃

ln

(
M2

s̃1

m2
g̃

)
−

M2
s̃2

M2
s̃2

− m2
g̃

ln

(
M2

s̃2

m2
g̃

)]
, (3.5)

where mg̃ , mũ, m
d̃

and,m2
s̃ are, respectively, the masses of the gluino, u-squark, d-squark

and s-squark.

In order to obtain quark masses in agreement with the experimental limits [19] we set

mg̃ ≈ 100 GeV, sin(2θũ) ≈ sin(2θ
d̃
) ≈ 10−3 and sin(2θs̃) ≈ 10−2.
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Figure 2: The diagram which gives mass to electron which does not apperar in the superpotential,

ẽ is the selectron.

The electron couples with the gaugino λB of U(1) group as the following:

L
ll̃g̃

= − ig′√
2
(2)

(
l̃ca l̄

c
aλ̄B − ¯̃

l
c

al
c
aλB

)
+ · · · . (3.6)

This allows the diagram of figure 2 to contribute to the electon mass. Therefore the electron

mass is given by:

me ∝
αU(1) sin(2θẽ)

π
m′

[
M2

ẽ1

M2
ẽ1

− m′2 ln

(
M2

ẽ1

m′2

)

−
M2

ẽ2

M2
ẽ2

− m′2 ln

(
M2

ẽ2

m′2

)]

, (3.7)

where αU(1) = g′2/(4π). Similar numerical analysis can be done as we performed in the

quark sector above.

From the figures 1 and 2 one can see why quarks are heavier than leptons; they get

color contribution while leptons not as was showed on ref. [3].

4. Supersymmetric left-right model (SUSYLR)

The supersymmetric extension of left-right models [20, 21] is based on the gauge group

SU(3)C ⊗SU(2)L ⊗SU(2)R ⊗U(1)B−L. Apart from its original motivation of providing a

dynamic explanation for the parity violation observed in low-energy weak interactions, this

model differs from the SM in another important aspect; it explains the observed lightness

of neutrinos in a natural way and it can also solve the strong CP problem.

On the technical side, the left-right symmetric model has a problem similar to that in

the SM: the masses of the fundamental Higgs scalars diverge quadratically. As in the SM,

the SUSYLR can be used to stabilize the scalar masses and cure this hierarchy problem.

SUSYLR models have the additional appealing characteristics of having automatic R-parity

conservation.

On the literature there are two different SUSYLR models. They differ in their SU(2)R
breaking fields: one uses SU(2)R triplets (SUSYLRT) and the other SU(2)R doublets

(SUSYLRD). Theoretical consequences of these models can be found in various papers in-

cluding [20] and [21] respectively. Some details of both models are described at appendix C

and appendix D.

5. Masses of fermions in SUSYLR models

For SUSYLRT, the mass term to the quarks is (eqs. (C.4), (D.3)):

Lmass
quarks = −

[
hq

ijQ
T
i Φıτ2Q

c
j + h̃q

ijQ
T
i Φ′ıτ2Q

c
j + h.c.

]
. (5.1)

– 7 –
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Using eq. (C.6) on the equation above, we get the following mass matrix in the non-diagonal

form

Mu
ij =

1√
2

[
k1h

q
ij + k′

2h̃
q
ij

]
(uiu

c
j + hc),

Md
ij =

1√
2

[
k′
1h

q
ij + k2h̃

q
ij

]
(did

c
j + hc). (5.2)

For the leptons (eq. (C.4)), the mass term is

Lmass
leptons = −

[
fab(L

T
a ıτ2∆LLb) + f c

ab(L
cT
a ıτ2δ

c
LLc

b) + hl
ab(L

T
a Φıτ2L

c
b)

+ h̃l
ab(L

T
a Φ′ıτ2L

c
b) + h.c.

]
. (5.3)

Using eq. (C.6) on equation given above, we get the following mass matrix in the non-

diagonal representation

M l
ab =

1√
2

[
k′
1h

l
ab + k2h̃

l
ab

]
(lal

c
b + hc),

Mν
ab =

1√
2

[
k1h

l
ab + k′

2h̃
l
ab

]
(νaν

c
b + hc) +

υR√
2
f c

ab(ν
c
aν

c
b + hc)

− υL√
2
fab(νaνb + hc). (5.4)

This result is in agreement with the presented in [22], if we take υL = 0.

For another hand, in the case of SUSYLRD one extracts from eqs. (D.3) the mass term

to the leptons

Lmass
leptons = −

(
hl

ab(L
T
a Φıτ2L

c
b) + h̃l

ab(L
T
a Φ′ıτ2L

c
b) + h.c.

)
. (5.5)

Using eq. (C.6) above, we get the following mass matrix in the non diagonal representation

M l
ab = − 1√

2

[
k′
1h

l
ab + k2h̃

l
ab

]
(lal

c
b + hc),

Mν
ab = − 1√

2

[
k1h

l
ab + k′

2h̃
l
ab

]
(νaν

c
b + hc). (5.6)

From eqs. (5.4), (5.6) we see that the choice of the triplets is preferable to doublets because

in the first case we can generate a large Majorana mass for the right-handed neutrinos [22].

The d, s and b quarks as well as the e, µ and τ leptons will have masses proportional to

the vacuum expectation values k′
1, k2, whereas the u, c and t will have masses proportional

to k1, k
′
2.

Now, we are deal with the charged fermions and we are going to present the results

which are hold in both models. To avoid flavor-changing-neutral currents (see [23]), we can

choose the vacuum expectations values of the bidoublets as

〈Φ〉 =
1√
2

(
k1 0

0 0

)
;

〈
Φ′〉 =

1√
2

(
0 0

0 k2

)
. (5.7)
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Where k1, k2 are of the order of the electroweak scale 102GeV. Using this fact on eqs. (5.2),

(5.4), we can rewrite the mass matrix of charged fermion as

Mu
ij =

hq
ij√
2
k1(uiu

c
j + hc),

Md
ij =

h̃q
ij√
2
k2(did

c
j + hc),

M l
ab = − h̃l

ab√
2
k2(lil

c
j + hc). (5.8)

The equations above are very similar to ones we get on the MSSM case, see eq. (2.2).

Following the references [4, 3] we can try to find a discrete symmetry in order to prevent

the electron and the quarks u and d from acquire masses at tree level. We impose the

following Z ′
2 symmetry

Q̂c
2 → τ3 Q̂c

2,

Q̂c
3 → −I Q̂c

3,

L̂3 → τ3 L̂3, (5.9)

and the others superfields are even under this symmetry (compare with eq. (2.4)). With

eqs. (5.9), (5.10) at hand we can reproduce the results presented in the section 2. We want

to emphasize this symmetry does not forbid a large Majorana mass for the right-handed

neutrinos and the results presented in ref. [22] are still valid.

The mixing between the squarks and the sleptons is given by

L = m2
QL

(ũ∗
3ũ3 + d̃∗3d̃3) + m2

QR
(ũ∗c

3 ũ∗c
3 + d̃∗c3 d̃3) + m2

LL
l̃∗3 l̃3 + m2

LR
l̃c3 l̃

∗c
3 +

+
1√
2

[
ALR

33 k1 l̃3l̃
c
3 + ÃLR

33 k′
2l̃3 l̃

c
3 + AQQ

33 k1ũ3ũ
c
3 + ÃQQ

33 k′
2d̃3d̃

c
3

]
, (5.10)

which generates the diagrams shown in figures 1 and 2, and then we can reproduce the

results presented in the section 3.

6. Conclusions

We show that we can introduce a discrete symmetry Z ′
2 in MSSM and in both SUSYLR

in order to explain the lower masses of the quarks u, d and s and of the electron while a

consistent picture with experimental data of CKM matrix is obtained. We have also shown

that in the models studied in this work the heavy leptons (µ and τ) acquire mass at tree

level while the electron get their mass at 1-loop level.

A discrete symmetry like Z ′
2 protects the Chiral symmetry to be broken in SU (3)

sector. This allows Chiral symmetry to be broken at different scales and two scales of mass

is obtained.

These results presented in this article is easily extended to the others supersymmetric

models as of the ref. [29].
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Superfield Usual Particle Spin Superpartner Spin

V̂ ′ (U(1)) Vm 1 λB
1
2

V̂ i (SU(2)) V i
m 1 λi

A
1
2

V̂ a
c (SU(3)) Ga

m 1 g̃a 1
2

Q̂i ∼ (3,2, 1/3) (ui, di)L
1
2 (ũiL, d̃iL) 0

ûc
i ∼ (3∗,1,−4/3) ūc

iL
1
2 ũc

iL 0

d̂c
i ∼ (3∗,1, 2/3)) d̄c

iL
1
2 d̃c

iL 0

L̂a ∼ (1,2,−1) (νa, la)L
1
2 (ν̃aL, l̃aL) 0

l̂ca ∼ (1,1, 2) l̄caL
1
2 l̃caL 0

Ĥ1 ∼ (1,2,−1) (H0
1 , H−

1 ) 0 (H̃0
1 , H̃−

1 ) 1
2

Ĥ2 ∼ (1,2, 1) (H+
2 , H0

2 ) 0 (H̃+
2 , H̃0

2 ) 1
2

Table 1: Particle content of MSSM.
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6.

A. MSSM

This model contains the particle content given at table 1. The families index for leptons

are a, b and they run over e, µ, τ , while the families index for the quarks are i, j = 1, 2, 3.

The parentheses in the first column are the transformation properties under the respective

representation of (SU(3)C , SU(2)L, U(1)Y ).

The superfields formalism is useful in writing the manifestly invariant supersymmetric

Lagrangian [18]. The fermions and scalars are represented by chiral superfields while the

gauge bosons by vector superfields. As usual the superfield of a field φ is denoted by φ̂ [11].

The chiral superfield of a multiplet φ is denoted by

φ̂ ≡ φ̂(x, θ, θ̄) = φ̃(x) + i θσmθ̄ ∂mφ̃(x) +
1

4
θθ θ̄θ̄ ¤φ̃(x)

+
√

2 θφ(x) +
i√
2

θθ θ̄σ̄m∂mφ(x)

+ θθ Fφ(x), (A.1)

while the vector superfield is given by

V̂ ≡ V̂ (x, θ, θ̄) = −θσmθ̄Vm(x) + iθθθ̄Ṽ (x) − iθ̄θ̄θṼ (x) +
1

2
θθθ̄θ̄DV (x). (A.2)
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The fields F and D are auxiliary fields which are needed to close the supersymmetric

algebra and eventually will be eliminated using their equations of motion.

The Lagrangian of this model is written as

LMSSM = LSUSY + Lsoft , (A.3)

where LSUSY is the supersymmetric piece and can be divided as follows

LSUSY = Llepton + LQuarks + LGauge + LHiggs, (A.4)

where each term is given by

Llepton =

∫
d4θ

[
ˆ̄Lae

2gV̂ +g′(− 1
2)V̂ ′

L̂a + ˆ̄lcae
g′V̂ ′

l̂ca

]
,

LQuarks =

∫
d4θ

[
ˆ̄Qie

2gsV̂ a
c +2gV̂ +g′( 1

6)V̂
′

Q̂i + ˆ̄uc
ie

2gsV̂ a
c +g′(− 2

2)V̂ ′

ûc
i

+ ˆ̄dc
ie

2gsV̂ a
c +g′( 1

3)V̂ ′

d̂c
i

]
,

LGauge =
1

4

{∫
d2θ

[
8∑

a=1

W aα
s W a

sα +
3∑

i=1

W iαW i
α + W ′αW ′

α

]
+ h.c.

}
, (A.5)

the subscripts a and i are family index, summed over e, µ, τ and 1, 2, 3, respectively, on

repetition. The last piece of our Lagrangian is written as

LHiggs =

∫
d4θ

[
ˆ̄H1e

2gV̂ +g′(− 1
2)V̂

′

Ĥ1 + ˆ̄H2e
2gV̂ +g′( 1

2)V̂
′

Ĥ2

]

+

∫
d2θ W +

∫
d2θ̄ W̄ . (A.6)

The field strength are given by [18]

W a
sα = − 1

8gs
D̄D̄e−2gsV̂ a

c Dαe2gsV̂ a
c α = 1, 2 ,

W i
α = − 1

8g
D̄D̄e−2gV̂ i

Dαe2gV̂ i

,

W ′
α = −1

4
DDD̄αV̂ ′ . (A.7)

The superpotential is given by

W = WRC + W̄RC + WRV + W̄RV ,

W2RC = µεĤ1Ĥ2 + yl
abεL̂aĤ1l̂

c
b + yu

ijεQ̂iĤ2û
c
j + yd

ijεQ̂iĤ1d̂
c
j ,

WRV = µ1aεL̂aĤ2 + λabcεL̂aL̂bl̂
c
c + λ1

aijεL̂aQ̂id̂
c
j + λ2

ijkû
c
i d̂

c
j d̂

c
k . (A.8)

Where WRC (WRV ) conserves (violates) R-parity. The indices are summed on repetition.

The terms that break Supersymmetry softly and do not induce quadratic divergence

[24] are

Lsoft = −1

2




8∑

i=1

mg̃g̃
ig̃i +

3∑

p=1

mλλp
Aλp

A + m′λBλB + h.c.



 − M2
LL̃†L̃
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− M2
l l̃c

†
l̃c − M2

QQ̃†Q̃ − M2
u ũc†ũc − M2

d d̃c
†
d̃c − M2

1 H̃1
†
H̃1 − M2

2 H̃2
†
H̃2

−
[
AlH1L̃l̃c + AuH2Q̃ũc + AdH1Q̃d̃c + M2

12H1H2 + h.c.
]
. (A.9)

We have omitted generation indices and we do the same to all the soft terms that we will

write on this article. The parameters mg̃,mλ, and m′ are the SU(3), SU(2), and U(1)

gaugino masses, respectively. M2
1 ,M2

2 and M2
12 are mass terms for the Higgs fields. The

scalar mass terms M2
L,M2

l ,M2
Q,M2

u , and M2
d are in general Hermitian 3 × 3 matrices.

The vacuum expectation value of this model is given by

〈H1〉 =
1√
2

(
v1

0

)
, 〈H2〉 =

1√
2

(
0

v2

)
. (A.10)

B. Mass diagonalization

The mass matrix of the “up” quark sector (Yu) (quark with charge +2/3) and of the charged

leptons (Yl) are written as the following:

Yu =




yu
11 yu

12 0

yu
21 yu

22 0

yu
31 yu

32 0



 · v2 , Yl =




yl
11 yl

12 0

yl
21 yl

22 0

yl
31 yl

32 0



 · v1 , (B.1)

while to the case of “down ” quark sector the mass matrix is given by

Yd =




0 0 yd

13

0 0 yd
23

0 0 yd
33



 · v1 , (B.2)

where v1 and v2 are VEVs of H1 and H2 respectively.

The fermion’s mass matrix is diagonalized using two unitary matrices, D and E. Then

we can write the diagonal mass matrix as

M2
diag = DY T

f · YfD−1 = E∗Yf · Y T
f (E∗)−1, (B.3)

where f can represent any “up”, “down” quarks or any charged lepton.

After the diagonalization we have defined the followings parameters

tu =
(
(yu

11)
2 + (yu

12)
2 + (yu

21)
2 + (yu

22)
2 + (yu

31)
2 + (yu

32)
2
)
· v2,

tl =
(
(yl

11)
2 + (yl

12)
2 + (yl

21)
2 + (yl

22)
2 + (yl

31)
2 + (yl

32)
2
)
· v1,

ru =

√
(tu)2 − 4((yu

12)
2uu − 2yu

11y
u
12vu + x2

u + (yu
11)

2zu) · v2,

uu = (yu
21)

2 + (yu
31)

2, vu = yu
31y

u
32 + yu

21y
u
22,

xu = yu
21y

u
22 − yu

31y
u
32, zu = (yu

22)
2 + (yu

32)
2,

rl =

√
(tl)

2 − 4((yl
12)

2ul − 2yl
11y

l
12vl + x2

l + (yl
11)

2zl) · v1,

ul = (yl
21)

2 + (yl
31)

2, vl = yl
31y

l
32 + yl

21y
l
22,

xl = yl
21y

l
22 − yl

31y
l
32, zl = (yl

22)
2 + (yl

32)
2,

td =
(
(yd

13)
2 + (yd

23)
2 + (yd

33)
2
)
· v1, rd = td. (B.4)
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Superfield Usual Particle Spin Superpartner Spin

V̂ ′ (U(1)) Bm 1 B̃ 1
2

V̂ i
L (SU(2)L) W i

mL 1 W̃ i
L

1
2

V̂ i
R (SU(2)R) W i

mR 1 W̃ i
R

1
2

V̂ a
c (SU(3)) ga

m 1 g̃a 1
2

Q̂i ∼ (3,2,1, 1/3) (ui, di)iL
1
2 (ũiL, d̃iL) 0

Q̂c
i ∼ (3∗,1,2,−1/3) (dc

i , −uc
i )iL

1
2 (d̃c

iL, −ũc
iL) 0

L̂a ∼ (1,2,1,−1) (νa, la)aL
1
2 (ν̃aL, l̃aL) 0

L̂c
a ∼ (1,1,2, 1) (lca, −νc

a)aL
1
2 (l̃caL, −ν̃c

aL) 0

∆̂L ∼ (1,3,1, 2)




δ+
L√
2

δ++
L

δ0
L

−δ+
L√
2



 0




δ̃+
L√
2

δ̃++
L

δ̃0
L

−δ̃+
L√
2



 1
2

∆̂′
L ∼ (1,3,1,−2)




δ′−
L√
2

δ′0L

δ′−−
L

−δ′−
L√
2



 0




δ̃′−
L√
2

δ̃′0L

δ̃′−−
L

−δ̃′−
L√
2



 1
2

δ̂c
L ∼ (1,1,3,−2)




λ−

L√
2

λ0
L

λ−−
L

−λ−

L√
2



 0




λ̃−

L√
2

λ̃0
L

λ̃−−
L

−λ̃−

L√
2



 1
2

δ̂′cL ∼ (1,1,3, 2)




λ′+

L√
2

λ′++
L

λ′0
L

−λ′+
L√
2



 0




λ̃′+

L√
2

λ̃′++
L

λ̃′0
L

−λ̃′+
L√
2



 1
2

Φ̂ ∼ (1,2,2, 0)




φ0

1 φ+
1

φ−
2 φ0

2



 0




φ̃0

1 φ̃+
1

φ̃−
2 φ̃0

2



 1
2

Φ̂′ ∼ (1,2,2, 0)




χ0

1 χ+
1

χ−
2 χ0

2



 0




χ̃0

1 χ̃+
1

χ̃−
2 χ̃0

2



 1
2

Table 2: Particle content of SUSYLRT.

C. Triplet model (SUSYLRT)

The particle content of the model is given at Tab.(2) (for recent work see for example [25]

and references therein). In parentheses it appears the transformation properties under the

respective (SU(3)C , SU(2)L, SU(2)R, U(1)B−L). The Lagrangian is given by:

LSUSY LRT = LLepton + LQuarks + LGauge + LHiggs, (C.1)
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where

LLepton =

∫
d4θ

[
ˆ̄LaLe

2gT iV̂ i
L+g′

“

−)
2

”

V̂ ′

L̂aL + ˆ̄L
c

aLe2gT iV̂ i
R

+g′( 1
2)V̂ ′

L̂c
aL

]
,

LQuarks =

∫
d4θ

[
ˆ̄QiLe2gsT aV̂ a

c +2gT iV̂ i
L
+g′( 1

6)V̂ ′

Q̂iL

+ ˆ̄Q
c

iLe2gsT̄ aV̂ a
c +2gT iV̂ i

R
+g′(−1

6 )V̂ ′

Q̂c
iL

]
,

LGauge =
1

4

{∫
d2θ

[
8∑

a=1

W aα
s W a

sα +

3∑

i=1

W iα
L W i

Lα +

3∑

i=1

W iα
R W i

Rα

+ W ′αW ′
α

]
+ h.c.

}
, (C.2)

with T i = τ i/2 is the generator of SU(2) group while T a = λa/2 is the generator of triplets

of SU(3) while T̄ a = λ̄a/2 is the generator of the anti-triplet of SU(3). We make the

usual assumption that the left and right couplings are equal, gL = gR = g. The terms

W aα
s ,W iα

L ,W iα
R and W ′α are calculated using expressions analogous to that at eq. (A.7).

The last part of our Lagrangian reads:

LHiggs =

∫
d4θ Tr

[
ˆ̄∆Le2gT iV̂ i

L
+g′(1)V̂ ′

∆̂L + ˆ̄∆
′
Le2gT iV̂ i

L
+g′(−1)V̂ ′

∆̂′
L

+ ˆ̄δ
c

Le2gT iV̂ i
R

+g′(−1)V̂ ′

δ̂c
L + ˆ̄δ

′c
Le2gT iV̂ i

R
+g′(1)V̂ ′

δ̂′cL + ˆ̄Φe2gT iV̂ i
L
+2gT iV̂ i

RΦ̂

+ ˆ̄Φ
′
e2gT iV̂ i

L+2gT iV̂ i
RΦ̂′

]
+

∫
d2θW +

∫
d2θ̄W . (C.3)

The most general superpotential W [20] is given by

W = M∆Tr(∆̂L∆̂′
L) + MδcTr(δ̂c

Lδ̂′cL) + µ1Tr(ıτ2Φ̂ıτ2Φ̂) + µ2Tr(ıτ2Φ̂
′ıτ2Φ̂

′)

+ µ3Tr(ıτ2Φ̂ıτ2Φ̂
′) + fabTr(L̂aıτ2∆̂LL̂b) + f c

abTr(L̂c
aıτ2δ̂

c
LL̂c

b)

+ hl
abTr(L̂aΦ̂ıτ2L̂

c
b) + h̃l

abTr(L̂aΦ̂
′ıτ2L̂

c
b) + hq

ijTr(Q̂iΦ̂ıτ2Q̂
c
j)

+ h̃q
ijTr(Q̂iΦ̂

′ıτ2Q̂
c
j) + WNR. (C.4)

Where hl, h̃l, hq and h̃q are the Yukawa couplings for the leptons and quarks, respectively,

and f and f c are the couplings for the triplets scalar bosons. We must emphasize that due

to the conservation of B − L symmetry, ∆′
L and δ′cL do not couple with the leptons and

quarks. Here WNR denotes (possible) non-renormalizable terms arising from higher scale

physics or Planck scale effects [26]. This model can be embedded in a supersymmetric

grand unified theory as SO(10) [27].

In addition, we have also to include soft supersymmetry breaking terms, they are:

Lsoft =
[
m2

LL
L̃†

LL̃L + m2
LR

L̃c†
L L̃c

L + m2
QL

Q̃†
LQ̃L + m2

QR
Q̃c†

L Q̃c
L + m2

ΦΦΦ†Φ

+ m2
ΦΦ′Φ†Φ′ + m2

Φ′Φ′Φ′†Φ′
]
−

[
M2

1 Tr(∆L∆′
L) + M2

2 Tr(δc
Lδ′cL) + M2

3 ΦΦ

+ M2
4 ΦΦ′ + M2

5 Φ′Φ′ + h.c.
]
−

[
ALLTr(L̃τ2∆LL̃) + ÃLLTr(L̃cτ2δ

c
LL̃c)

+ ALRTr(L̃Φıτ2L̃
c) + ÃLRTr(L̃Φ′ıτ2L̃

c) + AQQTr(Q̃Φıτ2Q̃
c)
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+ ÃQQTr(Q̃Φ′ıτ2Q̃
c) + h.c.

]
− 1

2

(
8∑

i=1

mg̃g̃
ig̃i +

3∑

i=1

mLW̃ i
LW̃ i

L

+

3∑

i=1

mRW̃ i
RW̃ i

R + m′B̃B̃ + h.c.

)
. (C.5)

The vacuum expectations values are given by [28]

〈Φ〉 =
1√
2

(
k1 0

0 k′
1

)
;

〈
Φ′〉 =

1√
2

(
k′
2 0

0 k2

)
;

〈∆L〉 =
1√
2

(
0 0

υL 0

)
; ;

〈
∆′

L

〉
=

1√
2

(
0 υ′

L

0 0

)
;

〈δc
L〉 =

1√
2

(
0 υR

0 0

)
;

〈
δ′cL

〉
=

1√
2

(
0 0

υ′
R 0

)
.

(C.6)

D. Doublet model (SUSYLRD)

This model contains the particle content given at table 3.

The Lagrangian of this model is given by:

LSUSY LRD = LLepton + LQuarks + LGauge + LHiggs, (D.1)

where LLepton,LQuarks,LGauge are given by eq. (C.2). The last part of our Lagrangian is

given by:

LHiggs =

∫
d4θ

[
ˆ̄χ1e

2gT iV̂ i
L
+g′( 1

2)V̂ ′

χ̂1 + ˆ̄χ2e
2gT iV̂ i

L
+g′(−1

2 )V̂ ′

χ̂2 + ˆ̄χ
c
3e

2gT iV̂ i
R

+g′(−1
2 )V̂ ′

χ̂c
3

+ ˆ̄χ
c
4e

2gT iV̂ i
R+g′( 1

2)V̂ ′

χ̂c
4 + ˆ̄Φe2gT iV̂ i

L
+2gT iV̂ i

RΦ̂ + ˆ̄Φ
′
e2gT iV̂ i

L
+2gT iV̂ i

RΦ̂′
]

+

∫
d2θW +

∫
d2θ̄W . (D.2)

The most general superpotential and soft supersymmetry breaking Lagrangian for this

model are:

W = Mχχ̂1χ̂2 + Mχcχ̂c
3χ̂

c
4 + µ1Tr(τ2Φ̂τ2Φ̂) + µ2Tr(τ2Φ̂

′τ2Φ̂
′) + µ3Tr(τ2Φ̂τ2Φ̂

′)

+ hl
abTr(L̂aΦ̂ıτ2L̂

c
b) + h̃l

abTr(L̂aΦ̂
′ıτ2L̂

c
b) + hq

ijTr(Q̂iΦ̂ıτ2Q̂
c
j)

+ h̃q
ijTr(Q̂iΦ̂

′ıτ2Q̂
c
j) + WNR. (D.3)

and the soft terms reads

Lsoft = −
[
m2

LL
L̃†

LL̃L + m2
LR

L̃c†
L L̃c

L + m2
QL

Q̃†
LQ̃L + m2

QR
Q̃c†

L Q̃c
L + m2

ΦΦΦ†Φ

+ m2
ΦΦ′Φ†Φ′ + m2

Φ′Φ′Φ′†Φ′
]
−

[
M2

1 χ1χ2 + M2
2 χc

3χ
c
4 + M2

3 ΦΦ + M2
4 ΦΦ′

– 15 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
1

Superfield Usual Particle Spin Superpartner Spin

V̂ ′ (U(1)) Bm 1 B̃ 1
2

V̂ i
L (SU(2)L) W i

mL 1 W̃ i
L

1
2

V̂ i
R (SU(2)R) W i

mR 1 W̃ i
R

1
2

V̂ a
c (SU(3)) ga

m 1 g̃a 1
2

Q̂i ∼ (3,2,1, 1/3) (ui, di)iL
1
2 (ũiL, d̃iL) 0

Q̂c
i ∼ (3∗,1,2,−1/3) (dc

i , −uc
i )iL

1
2 (d̃c

iL, −ũc
iL) 0

L̂a ∼ (1,2,1,−1) (νa, la)aL
1
2 (ν̃aL, l̃aL) 0

L̂c
a ∼ (1,1,2, 1) (lca, −νc

a)aL
1
2 (l̃caL, −ν̃c

aL) 0

χ̂1L ∼ (1,2,1, 1) (χ+
1L, χ0

1L) 0 (χ̃+
1L, χ̃0

1L) 1
2

χ̂2L ∼ (1,2,1,−1) (χ0
2L, χ−

2L) 0 (χ̃0
2L, χ̃−

2L) 1
2

χ̂c
3L ∼ (1,1,2,−1) (χ0

3L, χ−
3L) 0 (χ̃0

3L, χ̃−
3L) 1

2

χ̂c
4L ∼ (1,1,2, 1) (χ+

4L, χ0
4L) 0 (χ̃+

4L, χ̃0
4L) 1

2

Φ̂ ∼ (1,2,2, 0)




φ0

1 φ+
1

φ−
2 φ0

2



 0




φ̃0

1 φ̃+
1

φ̃−
2 φ̃0

2



 1
2

Φ̂′ ∼ (1,2,2, 0)




χ0

1 χ+
1

χ−
2 χ0

2



 0




χ̃0

1 χ̃+
1

χ̃−
2 χ̃0

2



 1
2

Table 3: Particle content of SUSYLRD.

+ M2
5 Φ′Φ′ + h.c.

]
−

[
ALRTr(L̃Φıτ2L̃

c) + ÃLRTr(L̃Φ′ıτ2L̃
c)

+ AQQTr(Q̃Φıτ2Q̃
c) + ÃQQTr(Q̃Φ′ıτ2Q̃

c) + h.c.
]

− 1

2

(
8∑

i=1

mg̃g̃
ig̃i +

3∑

i=1

mLW̃ i
LW̃ i

L +

3∑

i=1

mRW̃ i
RW̃ i

R + m′B̃B̃ + h.c.

)

(D.4)

The vacuum expectation values of the new scalars are

〈χ1L〉 =
1√
2

(
0

υL

)

, 〈χ2L〉 =
1√
2

(
υ′

L

0

)

,

〈χc
3L〉 =

1√
2

(
υR

0

)

, 〈χc
4L〉 =

1√
2

(
0

υ′
R

)

. (D.5)
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